40 research outputs found

    Spektroskopische Untersuchungen von Hämoglobinformen in Blutplasma und biologischem Gewebe

    Get PDF

    Fluorescence and Treatment Light Monitoring for Interstitial Photodynamic Therapy

    Get PDF
    In interstitial photodynamic therapy, light is distributed to the tumor via light diffusers. The light dose and the related phototoxic effect achieved throughout the target volume critically depend on absorption, scattering and diffuser positioning. Using liquid tissue phantoms, we investigated the dependencies of treatment light transmission and protoporphyrin IX (PpIX) fluorescence on these parameters. This enabled monitoring hemoglobin oxygenation and methemoglobin formation during irradiation (635 nm, 200 mW cm−1 diffuser length). Starting with two parallel cylindrical diffusers at 10 mm radial separation, the light transmitted between the fibers was largely determined by the minimal distance between the diffusers, but rather insensitive to an additional axial displacement or tilting of one fiber with respect to the other. For fixed distance between the diffusor centers, however, tilting up to direct contact resulted in a 10‐fold signal increase. For hemoglobin within erythrocytes, irradiation leads to photobleaching of PpIX without marked change in hemoglobin oxygenation until hemolysis occurs. Afterward, hemoglobin is rapidly deoxygenized and methemoglobin is formed, leading to a dramatic increase in absorption. For lysed blood, these effects start immediately. A comparison of intraoperative monitoring of the signals with the experimental results might help prevent insufficient treatment by reconsidering treatment planning or prolonging irradiation

    Severe paraneoplastic hypereosinophilia in metastatic renal cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Renal cell carcinoma can cause various paraneoplastic syndromes including metabolic and hematologic disturbances. Paraneoplastic hypereosinophilia has been reported in a variety of hematologic and solid tumors. We present the first case in the literature of severe paraneoplastic hypereosinophilia in a patient with renal cell carcinoma.</p> <p>Case presentation</p> <p>A 46 year-old patient patient with a history of significant weight loss, reduced general state of health and coughing underwent radical nephrectomy for metastasized renal cell carcinoma. Three weeks after surgery, the patient presented with excessive peripheral hypereosinophilia leading to profound neurological symptoms due to cerebral microinfarction. Systemic treatment with prednisolone, hydroxyurea, vincristine, cytarabine, temsirolimus and sunitinib led to reduction of peripheral eosinophils but could not prevent rapid disease progression of the patient. At time of severe leukocytosis, a considerable increase of cytokines associated with hypereosinophilia was measurable.</p> <p>Conclusions</p> <p>Paraneoplastic hypereosinophilia in patients with renal cell carcinoma might indicate poor prognosis and rapid disease progression. Myelosuppressive therapy is required in symptomatic patients.</p

    Expression and role of the immune checkpoint regulator PD-L1 in the tumor-stroma interplay of pancreatic ductal adenocarcinoma

    Get PDF
    IntroductionImmune checkpoint inhibitors (ICI), e.g., targeting programmed cell death protein 1-ligand 1 (PD-L1) or its receptor PD-1, have markedly improved the therapy of many cancers but so far failed in pancreatic ductal adenocarcinoma (PDAC). Macrophages represent one of the most abundant immune cell populations within the tumor microenvironment (TME) of PDAC being able to either support or restrain tumor progression depending on their phenotype. To better understand treatment failure of PD-L1/PD-1 inhibitors in PDAC, this study examined PD-L1 expression in the context of a dynamic TME in PDAC with a particular focus on the impact of macrophages.MethodsFormalin-fixed and paraffin embedded tissue samples of primary PDAC tissues and corresponding liver metastases were used for immunohistochemical analyses. Serial sections were stained with antibodies detecting Pan-Cytokeratin, CD68, CD163, CD8, and PD-L1.To investigate whether the PD-1/PD-L1 axis and macrophages contribute to immune escape of PDAC cells, a stroma enriched 3D spheroid coculture model was established in vitro, using different PDAC cell lines and macrophages subtypes as well as CD8+ T cells. Functional and flow cytometry analyses were conducted to characterize cell populations.ResultsImmunohistochemical analyses revealed that PD-L1 is mainly expressed by stroma cells, including macrophages and not PDAC cells in primary PDAC tissues and corresponding liver metastases. Notably, high local abundance of macrophages and strong PD-L1 staining were commonly found at invasion fronts of tumoral lesions between CD8+ T cells and tumor cells. In order to investigate whether PD-L1 expressing macrophages impact the response of PDAC cells to treatment with PD-L1/PD-1 inhibitors, we developed a spheroid model comprising two different PDAC cell lines and different ratios of in vitro differentiated primary M1- or M2-like polarized macrophages. In line with our in situ findings, high PD-L1 expression was observed in macrophages rather than PDAC cells, which was further increased by the presence of PDAC cells. The effector phenotype of co-cultured CD8+ T cells exemplified by expression of activation markers and release of effector molecules was rather enhanced by PDAC macrophage spheroids, particularly with M1-like macrophages compared to mono-culture spheroids. However, this was not associated with enhanced PDAC cell death. ICI treatment with either Durvalumab or Pembrolizumab alone or in combination with Gemcitabine hardly affected the effector phenotype of CD8+ T cells along with PDAC cell death. Thus, despite strong PD-L1 expression in macrophages, ICI treatment did not result in an enhanced activation and cytotoxic phenotype of CD8+ T cells.ConclusionOverall, our study revealed novel insights into the interplay of PDAC cells and macrophages in the presence of ICI

    Interrelation between Spectral Online Monitoring and Postoperative T1-Weighted MRI in Interstitial Photodynamic Therapy of Malignant Gliomas

    Get PDF
    In a former study, interstitial photodynamic therapy (iPDT) was performed on patients suffering from newly diagnosed glioblastoma (n = 11; 8/3 male/female; median age: 68, range: 40&ndash;76). The procedure includes the application of 5-ALA to selectively metabolize protoporphyrin IX (PpIX) in tumor cells and illumination utilizing interstitially positioned optical cylindrical diffuser fibers (CDF) (2&ndash;10 CDFs, 2&ndash;3 cm diffusor length, 200 mW/cm, 635 nm, 60 min irradiation). Intraoperative spectral online monitoring (SOM) was employed to monitor treatment light transmission and PpIX fluorescence during iPDT. MRI was used for treatment planning and outcome assessment. Case-dependent observations included intraoperative reduction of treatment light transmission and local intrinsic T1 hyperintensity in non-contrast-enhanced T1-weighted MRI acquired within one day after iPDT. Intrinsic T1 hyperintensity was observed and found to be associated with the treatment volume, which indicates the presence of methemoglobin, possibly induced by iPDT. Based on SOM data, the optical absorption coefficient and its change during iPDT were estimated for the target tissue volumes interjacent between evaluable CDF-pairs at the treatment wavelength of 635 nm. By spatial comparison and statistical analysis, it was found that observed increases of the absorption coefficient during iPDT were larger in or near regions of intrinsic T1 hyperintensity (p = 0.003). In cases where PpIX-fluorescence was undetectable before iPDT, the increase in optical absorption and intrinsic T1 hyperintensity tended to be less. The observations are consistent with in vitro experiments and indicate PDT-induced deoxygenation of hemoglobin and methemoglobin formation. Further investigations are needed to provide more data on the time course of the observed changes, thus paving the way for optimized iPDT irradiation protocols
    corecore